GPS and Surveying of Weed Populations

Equipment and Costs

By: Pat Akers, Integrated Pest Control Branch, California Dept. of Food and Agriculture

Nowadays most people are probably aware of the existence of the Global Positioning System, better known as GPS. Many know that it’s useful for surveying, agriculture, mining, geology, navigating and locating objects on the earth. In fact, GPS has found many important uses in natural resource management, including the mapping of weed populations. This article describes the selection of GPS equipment for the mapping and management of weeds.

A Primer on How it Works

GPS has three major components. The first component is the GPS unit, which gives us access to the system. A GPS unit is a specialized radio receiver combined with electronics for filtering and calculations. The second major component is a set of 24 specialized satellites that the GPS receiver uses for calculating its position. The third component is a set of ground stations for tracking the satellites. Each satellite broadcasts several different sets of information, of which three are most important to our discussion: 1) a time signal, 2) information on the satellites’ positions, and 3) a unique binary sequence code (C/A).

Choosing a GPS Unit: Juggling Needs

The selection of a GPS unit will strongly depend on the needs of the user. Examples of common user needs are:

1) Accuracy for navigation.
2) Accuracy for detailed mapping (with 2-3 meter accuracy being adequate).
3) Accuracy without having to remain on a single location for more than 1 second.
4) The GPS data must be easily transferred to a mapping program (Geographic Information System or GIS).
5) The ability to record specific descriptive information along with the positional data.
6) The unit should be as convenient to use as possible.
7) Costs should be kept as low as possible. Meeting different requirements affects the cost of the GPS solution.

Low-end Systems - The absolutely lowest cost option is one of the many sportsman GPS models on the market. Many of these units are highly sophisticated, very portable, offer a number of convenient bells and whistles, and cost less than $300, sometimes as little as $200. For example, both Garmin and Eagle manufacture 12-parallel-channel GPS units which have received good
reviews from users. These systems are limited to 100 meter accuracy unless differentially corrected. Although many of these units describe themselves as “DGPS ready,” an antenna and receiver for the correction data must be added separately. They also have limited capabilities to store GPS position information, especially descriptive data.

The next important improvement is the addition of differential correction capability. There are a lot of options, with lots of trade-offs. However, the issue is further complicated because Trimble’s “mapping-quality” GPS units all provide essentially a complete mapping package, including the ability to differentially correct data using PPDGPS. Since there is almost a qualitative divide between them and other GPS systems, I will treat Trimble products separately.

Trimble vs. Everybody Else: “Mapping Grade” GPS systems - Trimble mapping products are expensive, but they provide mapping data with 0.5-3 meter accuracy, using a standard computer and Internet connection. Their system includes software (Pathfinder Office) that runs on the PC computer and provides a powerful and easy PPDGPS facility. The package provides reasonably flexible data entry capabilities, the ability to record information on line-type or area-type objects (instead of just points), and flexible integration with GIS systems.

Trimble has essentially two lines that depend on PPDGPS. 1) **Trimble’s GeoExplorer** is a hand-held GPS that costs about $3500 with the battery pack. It provides 1-3 meter accuracy, differentially corrected. It has a fairly flexible data entry capability and it’s controlled through a series of menus, but it has only 8 buttons on the keypad. Text data is entered by scrolling through the entire alphanumeric character set, which can be quite tedious. Fortunately, the data entry screens allow the creation of menus, which can often minimize the need to enter text. 2) **Trimble’s Pathfinder Pro XL** has the GPS receiver mounted in a backpack, attached to a handheld datalogger, and its 8- or 12-channel GPS engine provides accuracy to less than a meter. Trimble no longer manufactures it, but it can often be found used. The updated versions of the ProXL are the ProXR and ProXRS, which integrate RTDGPS capability and provide accuracy down to 0.5 meters. They cost $9,000 to $12,000. The “ProX” line dataloggers provides better information about the GPS status than the GeoExplorer and they have full alphanumeric keypads. For further discussion see www.cdfa.ca.gov/gps.

And for Everybody Else: Real Time Differential GPS (RTDGPS) - RTDGPS has one big advantage over Post-Processed Differential GPS (PPDGPS): the corrected, high-accuracy results are available immediately in the field. This makes RTDGPS extremely useful for navigation, as its accuracy is 1-20 meters, depending on the quality of the receiver and the reference data. The major disadvantage of RTDGPS relative to PPDGPS is that the accurate results depend on remaining in contact with the reference station. Any locations recorded while out of contact will provide accuracy to less than a meter. Trimble no longer manufactures it, but it can often be found used. The updated versions of the ProXL are the ProXR and ProXRS, which integrate RTDGPS capability and provide accuracy down to 0.5 meters. They cost $9,000 to $12,000. The “ProX” line dataloggers provides better information about the GPS status than the GeoExplorer and they have full alphanumeric keypads. For further discussion see www.cdfa.ca.gov/gps.

Helena Aquatic Specialists
Bonnie Figliolia
813-626-5121
Trace Wolfe
888-212-1390
561-301-8653
Bo O’Neal
561-573-7405

Helena Ad 2/c
P/U from Winter Aquatics with change as on this page
change 2nd color to green pms 346
have only 100 meter accuracy, and there will be no way to improve that accuracy, either in the field or the office (unless you also have PPDGPS capability, or want to stay on one location for an extended period of time so you can average the results). PPDGPS does not depend on remaining in contact with a reference station. RTDGPS is also somewhat less accurate than PPDGPS, but the difference is generally negligible for all but the most demanding applications. In the past, RTDGPS had other disadvantages having to do with the complexity and expense of implementing RTDGPS relative to PPDGPS, especially for implementing the most dependable solutions. However, as with most emerging technologies, costs continue to drop and performance improves. In the last year or so RTDGPS solutions have begun to appear that approach the cost-effectiveness and dependability of Trimble units.

The major variable in the cost vs. dependability equation of RTDGPS is the choice of the source for the differential correction data. For most of us, there are three major sources for correction data: 1) commercial broadcasts on FM wavelengths, using transmission facilities of normal commercial radio, 2) commercial broadcasts from geosynchronous satellites, and 3) government broadcasts from specialized Coast Guard DGPS transmitters called “Beacons.” As you might expect, there are trade-offs between cost, convenience, and capability for these different options. For a more complete discussion of sources for data correction see www.cdfa.ca.gov/gps

Mix and Match - There are two other trends that can affect the choice of a system. First, RTDGPS has such overpowering advantages that manufacturers are integrating RTDGPS receivers with GPS receivers in their higher-end systems. For example, Trimble’s ProXL has been replaced by the ProXR, which incorporates a Beacon receiver, and the ProXRS, which incorporates both a Beacon and satellite receiver. The other trend is to turn a computer or other equipment into a GPS system. For instance, TeleType produces a small GPS sensor, without any readout whatsoever, that can plug into the PC port of a laptop computer and turn it into a GPS unit. Including software to allow viewing of the results against a background map, it costs about $850. At CDFA, we are about to evaluate a similar system. It combines a Racial Navigator 2-meter accuracy DGPS sensor (which is a Trimble 8-channel GPS receiver integrated with Racial’s DGPS correction receiver), a handheld Windows CE computer, and datalogging/GPS/mapping software to create a complete datalogging RTDGPS system, which should also provide a moving map for navigation purposes. The sensor costs about $2800, the handheld computer about $600, the software about $700, and various costs for cables, battery, and pack bring the total cost to $4500, which includes one year of the satellite DGPS subscription service. This competes in cost with the GeoExplorer, yet provides real-time differential GPS in the field for excellent navigation (especially with the moving map), robust satellite service, and a very convenient and flexible data entry system.

What’s a Poor Mapper to Do?

If you are trying to get into GPS mapping of weeds, the first step is to...
establish your priorities, including
cost. Your budget will determine
whether you can afford differential
correction and flexible data entry and
manipulation. Also consider where
you work. If you work within range of
the Coast Guard Beacons, this is defi-
nitely an option to consider carefully.
A simple sportsman model GPS with
an added consumer-level Beacon re-
ceiver (accurate to 4-12 meters) would
not cost much more than $600 total. For
another $1100-1500 you could add flex-
ible data entry, by interfacing a Beacon-
based RTDGPS sensor with a con-
sumer handheld computer and
appropriate software. If you work be-
ond the range of the Beacons but have
a higher budget, Trimble’s GeoExplorer
provides data entry flexibility, good
accuracy for mapping via PPDGPS,
and no continuing subscription costs.
If you can afford an additional $800 per
year above the cost of a GeoExplorer,
then a handheld computer system
interfaced with a satellite-based RTDGPS
will give you accurate navigation, very
convenient data entry, and the freedom
of satellite RTDGPS. If you cannot af-
ford differential correction, probably
greater overall accuracy can be
achieved with careful marking of 7.5
min USGS topographic quads in the
field, rather than GPS. Finally, remem-
ber that GPS is an emerging technol-
yogy. If you can’t afford what you want
now, in a year or two it might be avail-
able.

Improving the Accuracy of the
GPS System: Differential
Correction
Most of us would probably wish to
locate a weed to better than 100 meters,
or even 20 meters. There are several
ways of improving the accuracy of the
GPS system, but the one that presently
offers the best combination of speed,
convenience, cost, and dependability
is called differential correction, or dif-
ferential GPS (DGPS). It is not the most
accurate, but will provide 0.5 -10 meter
accuracy with one second of data, de-
pending on the quality of the GPS re-
ceiver. Even the better sportsman
models routinely provide 2-5 meter
accuracy using differential correction.
One to three meters of accuracy has
proved adequate for our needs at
CDFA, and DGPS has so many other
advantages over more accurate ap-
proaches that we have never imple-
mented them.

DGPS works on a simple principle.
One unit is stationary, at a known lo-
cation, and acts as a reference base sta-
tion. The base station unit knows its
true location, but continues to calcu-
late its position according to the infor-
mation it receives from the GPS
satellites. The difference between the
calculated position and the true posi-
tion provides an accurate estimate of
the errors in the calculated measure-
ment, at the time of the measurement.
This estimate of the error can then be
applied to the position calculations
made at the same time by any GPS unit
nearby (called the mobile or rover
unit), even if it is moving. For many
applications, “nearby” can be any-
where up to 200 miles.

There are two major methods
whereby differential corrections can be
applied to the measurements made by
a mobile unit. 1) Post-Processed DGPS
(ppdgps): The position measure-
ments are stored in the mobile GPS and
later downloaded to a computer. The
correction measurements from the ref-
ence GPS are also downloaded into
the computer, and then specialized
Pat Akers is an Agricultural Biologist with the Integrated Pest Control Branch, California Department of Food and Agriculture, pakers@cdfa.ca.gov

American Cyanimid

PRODUCT PORTFOLIO

Arsenal
Imazapic
Applicators
Concentrate
(Plateau)
Stalker
Sahara
Pendulum

PRODUCT USES

• Exotic Control • Brush Control • Bareground
• Turf Management • Seed Head Suppression
• Basal Applications • Pre-emergent Control
 • Aquatic EUP •

For Information
Call Phil C. Waller
(941) 619-6255
Fax (941) 701-8287

6651 ENGLELAKE DRIVE, LAKELAND, FLORIDA 33813

NAEPPC Meets at Natural Areas Association Conference

Brian Bowen,
SE-EPPC Coordinator

The National Association of the Exotic Pest Plant Council met on October 13 in conjunction with the 26th Annual Natural Areas Conference in Tucson, AZ. The meeting was well-attended with representatives from CalEPPC, FLEPPC, TN-EPPC, KY-EPPC (forming) and Mid Atlantic-EPPC (MA-EPPC). The Pacific Northwest EPPC was unable to attend.

A brief overview was given by Brian Bowen regarding the history of NAEPPC. There was a discussion of the MOU signed by FLEPPC, CALEPPC, PACNWEPPC, and TN-EPPC at Asilomar, California in 1995 which established NAEPPC. Brian Bowen of TN-EPPC, John Randall and Nelroy Jackson, both of CALEPPC who were present a this meeting, also helped draft the 1995 MOU. John Randall suggested that the MOU be updated. Nelroy Jackson, who was the original transcriber, agreed to work on updating it. Brian and John agreed to review the changes. The MOU will then be sent to all of the respective EPPC boards for approval.

Some noteworthy changes include updating the MOU to add the newly-formed Councils. This may also include organizations interested in participating in the NAEPPC even though they are not an EPPC formally by name, i.e., the New York Invasive Plant Council. All participating organizations however will be required to subscribe to the EPPC mission and its goals. The MOU will clearly state that EPPC’s purpose pertains to natural area and wildland weed issues. It was