Effects of Defoliation on Growth and Reproduction of Brazilian Peppertree (*Schinus terebinthifolia*)

J. P. Cuda¹, L. W. Treadwell and W.A. Overholt²

¹Entomology & Nematology Dept., Gainesville, FL
²BioControl Research & Containment Lab, Indian River REC, Ft Pierce, FL
Acknowledgements

- Janis Col
- Alison Fox
- Judy Gillmore
- Kaoru Kitajima
- Bancroft Whitely
- Sandra Wilson

- FWC
- SFWMD

(Photo credit: Bryan Harry, NPS)
Outline

• Introduction
• Materials & Methods
• Results
• Conclusions
Brazilian Peppertree

Schinus terebinthifolia Raddi
Severe BP Infestation

Galveston, Texas
Distribution of BP

- **ORIGIN**: Brazil, Argentina, Paraguay

- **US DISTRIBUTION**: California, Florida, Georgia, Hawaii, Texas, Alabama, Caribbean Islands

- **DESCRIPTION**:
 - Evergreen Shrub
 - Compound Leaves
 - Red Berries
 - Several ‘Varieties’
 - Dioecious

EDDmapS 2012
Why is BP Invasive in FL?

- Multiple Genotypes in South America

Williams et al. (2005, 2007)
Why is BP Invasive in FL?

- Hybrid Vigor

Geiger et al. (2011)
Why is BP Invasive in FL?

Enemy Escape Hypothesis (Williams 1954)

- Native Specialist Enemies Strongly Control the Abundance and/or Distribution of Native Plants
- Escape from Specialist Enemies is a Key Contributor to Exotic Plant Success
- Enemy Escape Benefits Exotics Because They Gain a Competitive Advantage Over Native Plants as a Result of Being Liberated from Their Pests
BP Targeted for BioControl

- Non-native Invasive Species
- Causes Severe Ecological Damage
- Toxic and Allergenic (Poison Ivy Family)
- Low Beneficial Value (Beekeepers?)
- Conventional Controls Temporary, Costly
- No Native Congeners in US !!!
BioControl Project Goals

- Collect Promising Natural Enemies in SA
- Conduct Biological & Impact Studies with Candidate BioControl Agents
- Import BioAgents & Develop Rearing Procedures
- Perform Host Specificity Testing Required for Release into Florida
- Release / Evaluate Performance of Approved BioControl Agents
1. Thrips
 - Damages Shoots
2. Sawfly
 - Defoliator
3. Seed Wasp
 - Attacks Fruits
4. Weevil
 - Stem Feeder
5. Psyllid
 - Galls Leaves
6. Leafroller
 - Defoliator
7. Fungus
 - Leaf Spot
Sawfly Defoliated Plants in Brazil
Psyllid Defoliated Peruvian Peppertree

Downer et al. (1988)
Leaflet Roller Impact Study

Manrique et al. (2009)
Research Objectives

- Simulate Insect Defoliation to Brazilian Peppertree Under Field Conditions in Florida
- Measure Effect of Defoliation Events on Growth and Reproduction of Brazilian Peppertree
Materials & Methods

• Study Area- IRREC Ft. Pierce
Materials & Methods

Treadwell and Cuda (2007)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n</th>
<th>M</th>
<th>F</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>August 27</td>
<td>May 11</td>
<td>September 27</td>
</tr>
<tr>
<td>Control</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>1/1</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>1/2</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2/1</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2/3</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Abbreviations: M, male; F, female.

b One defoliation yr\(^{-1}\) for 1 yr; 2/1, two defoliations yr\(^{-1}\) for 1 yr; 2/3, two defoliations yr\(^{-1}\) for 3 yr.
Materials & Methods

• Measuring Canopy Diameter
Materials & Methods

field plots at Fort Pierce IRREC
Results: Height

Sequences with the same letter not statistically different, $\alpha = 0.05$ (SAS PROC MIXED)

Treadwell and Cuda (2007)
Results: Crown Diameter

Sequences with the same letter not statistically different, $\alpha = 0.05$ (SAS PROC MIXED)

Treadwell and Cuda (2007)
Results: Fruit Production

Sequences with the same letter not statistically different, $\alpha = 0.05$ (SAS PROC MIXED)

Treadwell and Cuda (2007)
Results

July 2003:
trt 21 defoliated Sept 2001, Apr 2002
trt 12 defoliated Sept 2001, Sept 2002
Summary

• Multiple Defoliations Reduced BP Height & Canopy Growth Compared to Controls or Plants Defoliated Only Once

• Trees Subjected to Repeated Defoliations Had Fewer Fruits & Lower Fruit Dry Weights Than Control Plants or Those Defoliated Only One Time
Conclusions

• Findings Consistent w/ Guideline 3, International Code of Best Practices¹ “Select Agents w/ Potential to Control Target Weed”
 – Defoliating Insects Capable of Reducing BP Growth & Fruit Production
 – Sustained Defoliation Should Reduce Invasiveness of BP in Florida

Balciunas (2000)
Thank You