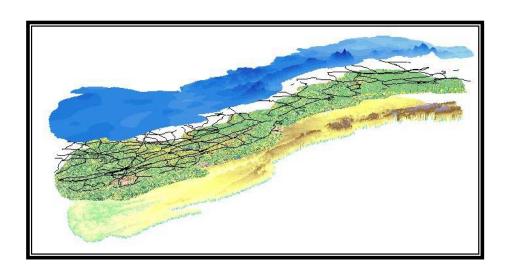
Invasion of non-native plants to the forests of the Cumberland Plateau and Mountain Region

Dawn Lemke^{1,2,3}, Jennifer Brown², Philip Hulme³ and Wubishet Tadesse¹

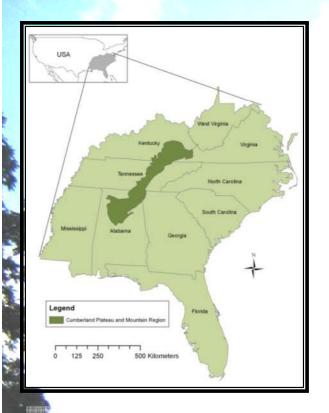
- 1 Department of Natural Resources and Environmental Sciences, Alabama A&M University, Normal, Alabama 2 Biomathematics Research Centre, Canterbury University, Christchurch, New Zealand
 - 3 National Centre for Advanced Bio-Protection Technologies, Lincoln University, Lincoln, New Zealand

Presented at Disturbance and Change, Invasive Plants and Paths to Recovery a Joint Meeting of SE-EPPC and SE-SERI

May 12, 2010



INTRODUCTION: Assessing Invasive Plants



- Invasion is not new phenomena; it is part of an evolutionary process.
- However, recently invasions have been greatly accelerated due to human influences.
- They are now considered a form of global change as they are occurring at an unprecedented rate across the globe.
- As our impact on the landscape changes the composition of 'natural' areas, it is important that we integrate technology to assist in active management.

INTRODUCTION: GIS and Statistical Modeling

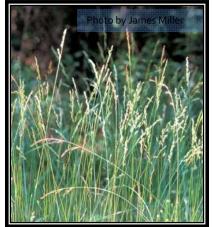
- Invasions are influenced by landscape pattern and scale.
- Tools that integrate space, time and scale are essential to understanding the underlying processes.
- Geographical Information Systems (GIS) is a tool that integrates these components and can be used to manage, analyze and disseminate spatial information.
- Relationships often not linear thus non-parametric modeling techniques are need.

Cumberland Plateau & Mountain Region

- 59,000 square kilometres
- One of the most diverse woody plant communities in the eastern United States.
- Forest resources are a major part of the economy.
- 70% of the land in this area is forested, with over 75% of this in hardwoods.

RESEARCH QUESTIONS:

- 1. What is the probable distribution of three invasive species (Japanese honeysuckle, tall fescue and mimosa) in Cumberland Plateau and Mountain region?
- 2. What is the relative importance of landscape drivers on the distribution of these invasive plants?
 - a) environment (e.g., elevation, water sources etc.)
 - b) anthropogenic (e.g. distance to human features, management etc.)
- 3. How does plant occurrence affect our ability to model the probable distribution?


DATA: Forest Inventory Analysis

- USDA Forest Service program: collects, analyses, and reports information on the status, trends and conditions of forests within the U.S.
- There is an extension of the Forest Inventory Analysis database that focuses on invasive plants.
- Invasives identified: four tree species of invasives, seven shrubs, seven vines, five grasses and two forbs, for a total of 25 invasive plants in the Cumberland Plateau and Mountain region.

Name	Occurrence
Tree of Heaven	39
Mimosa	45
Princess Tree	8
Russian Olive	1
Autumn Olive	9
Burning Bush	1
Chinese Privet	234
Japanese Privet	71
Bush Honeysuckles	10
Sacred Bamboo	5
Nonnative Roses	141
Asian Bittersweet	1
Chinese Yam	7
Winter Creeper	2
Japanese Honeysuckle	579
Kudzu	11
Periwinkles	1
Japanese Wisteria	2
Tall Fescue	93
Cogongrass	1
Nepalese Browntop	49
Chinese Silvergrass	10
Nonnative Bamboos	9
Shrubby Lespedeza	9
Chinese Lespedeza	25

FOCAL SPECIES:

Japanese Honeysuckle

Tall Fescue

Mimosa

Three species were chosen to study, based on:

- Overall number of sites of occurrence
- Life forms

Species chosen were:

- Japanese honeysuckle ($Lonicera\ japonica$) [n = 579][Vine]
- Tall fescue (*Lolium arundinaceum*)[*n* = 93][Grass]
- Mimosa (*Albizia julibrissin*), [n = 45][Tree]

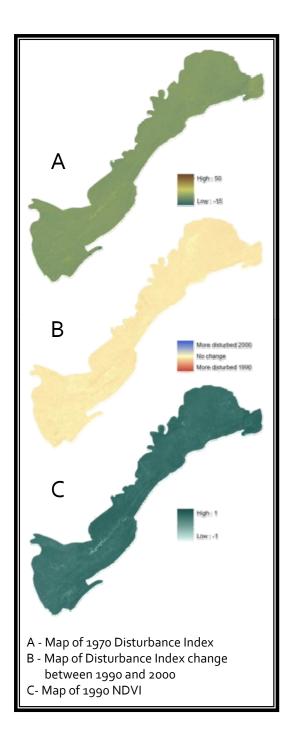
DATA: Landscape Variables

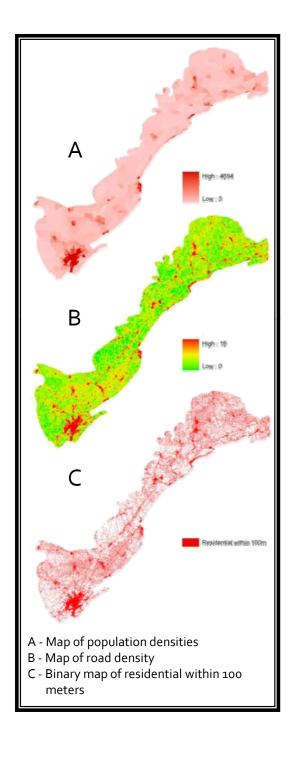
- Landscape associated variables were derived from digital information.
- Landscape variables were categorized into six groups:
 - Landsat

- Climate
- Anthropogenic
 - Land use

Landform

- Water
- Correlation within each group was assessed, and those with high correlation (>0.80) were removed.



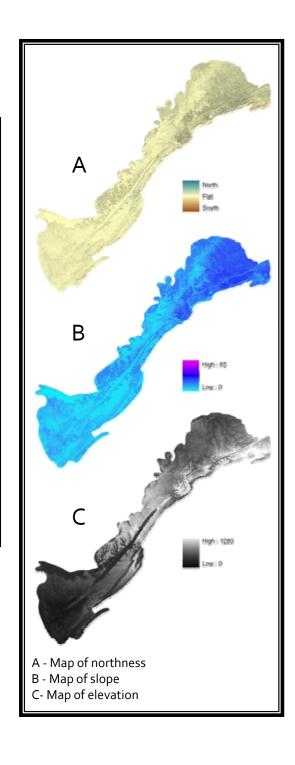

DATA: Landsat

- Landsat imagery was used to assess forest disturbance.
- Two indices were calculated:
 - Normalized Difference Vegetation Index (NDVI)
 - Disturbance Index (DI)
- This was done for three time periods: 1970, 1990 and 2000.
- Landsat variables:
 - •Dl70 •Dl00-90
 - •DI90 •NDVI90
 - DlooNDVloo

DATA: Anthropogenic

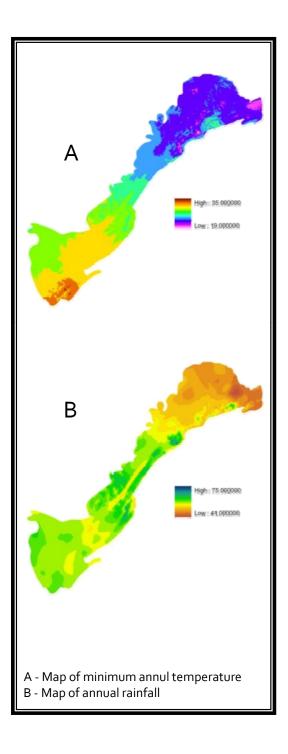
- Invasive plants are often introduced and spread by people.
- Variables that represent human use were derived from road, census and land use data.
- Anthropogenic variables
 - Population
- Road distance
- Road dentistry
 Main road distance
- Amount of developed area within 100m and 500 m buffer

DATA: Landform

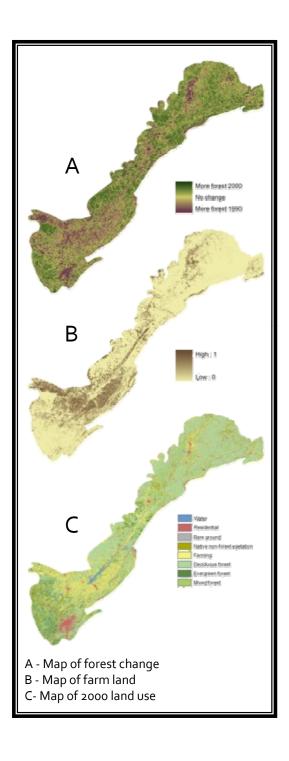

- The landform variables were selected based on their biological significance and correlation with other studies to plant distribution.
- 3om digital elevation model
- Environmental variables:
 - Northness
- Solar radiation

Eastness

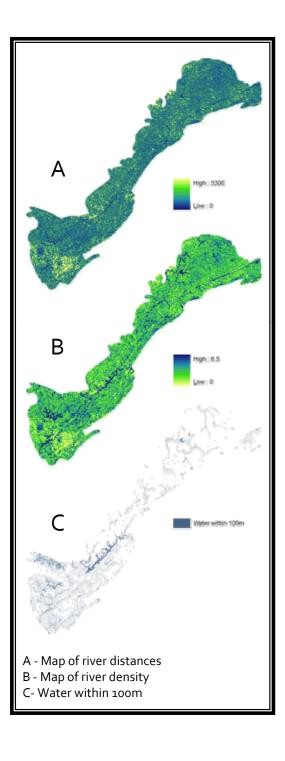
Curvature


Slope

Elevation


DATA: Climate

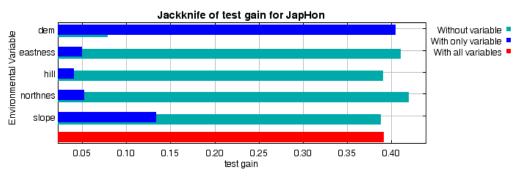
- Environmental limitations of distribution are often highly influenced by climate, particularly rainfall and temperature.
- Monthly and annual temperature and rainfall maps were downloaded from PRISM.
- Highly correlated
- Climate variables:
 - Minimum annual temperature
 - Average annual rainfall

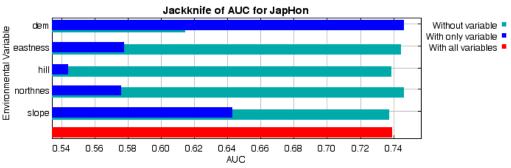

DATA: Land Use

- Land use variables were extracted from the USGS national land cover data (NLCD) for 1992 and 2001.
- Reclassified to 8 land uses based on Anderson's groupings.
- Land use variables:
 - Forest change (1992-2001) within a 500m buffer
 - Forest cover in 2001 within 100m buffer
 - Farming in 2001 within 500m buffer
 - Categorical variables of land use in 1992
 - Categorical variables of land use in 2001

DATA: Water

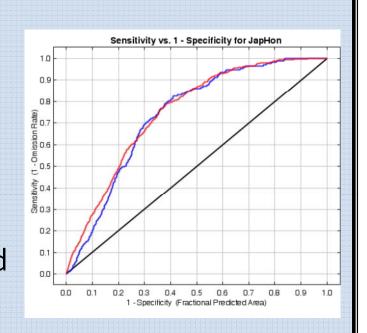
- Streams may affect the distribution and establishment of plants by influencing seed dispersal and moisture availability.
- National river shape files and water bodies defined in the NLCD database.
- Water variables:
 - River distance
 - River density
 - Amount of water within 100m buffer
 - Amount of water within 500m buffer

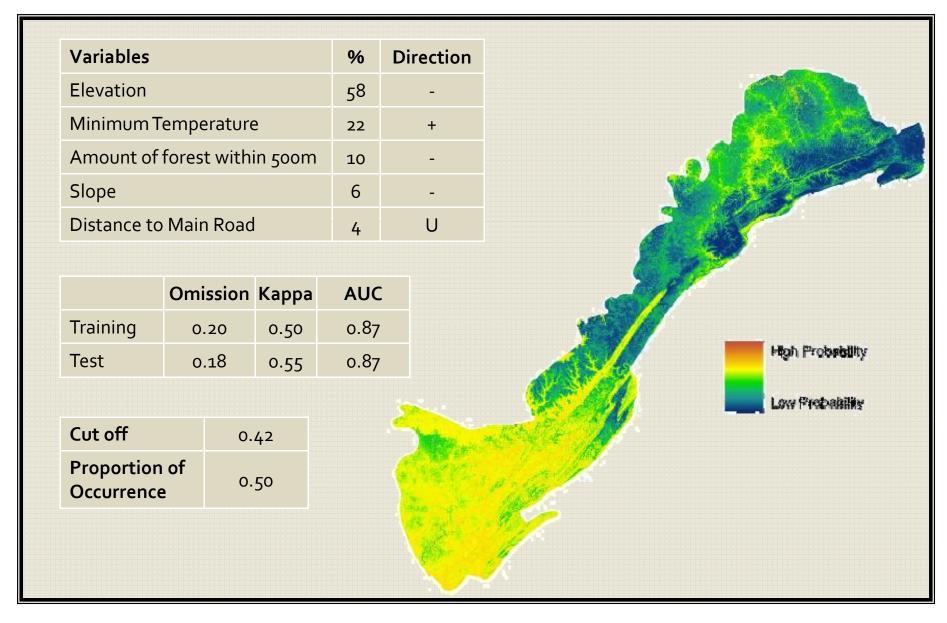

MAXENT MODELS:


- Each group of variables

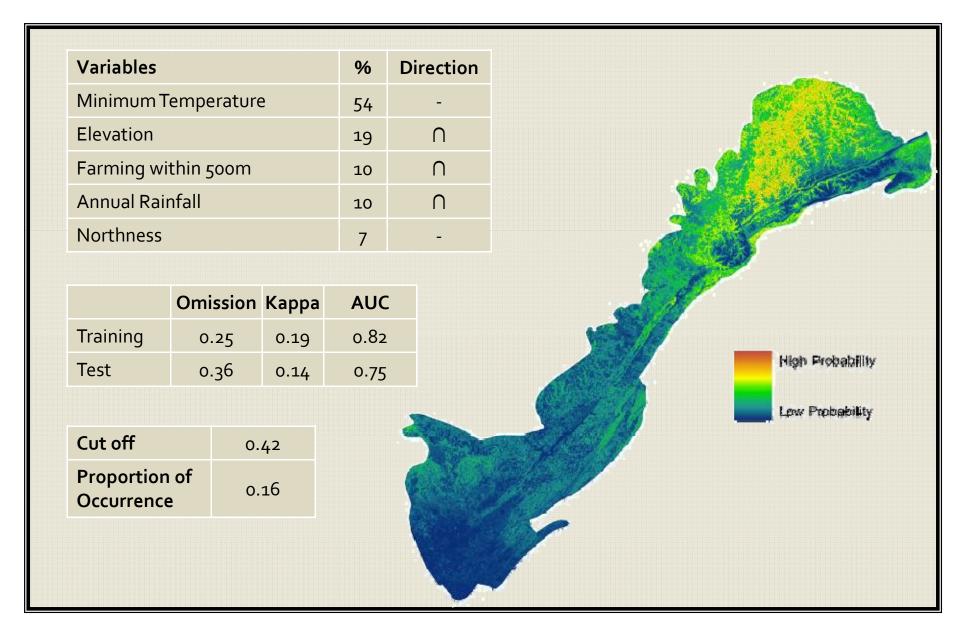
 (i.e. Landsat) was
 modeled using
 backward selection
 techniques.
- Full model was
 developed from all
 selected for each
 group, with only the
 significant variables
 kept in the final model.

Variable	Percent contribution
dem	80.5
slope	13.4
eastness	3
northnes	2.5
hill	0.6

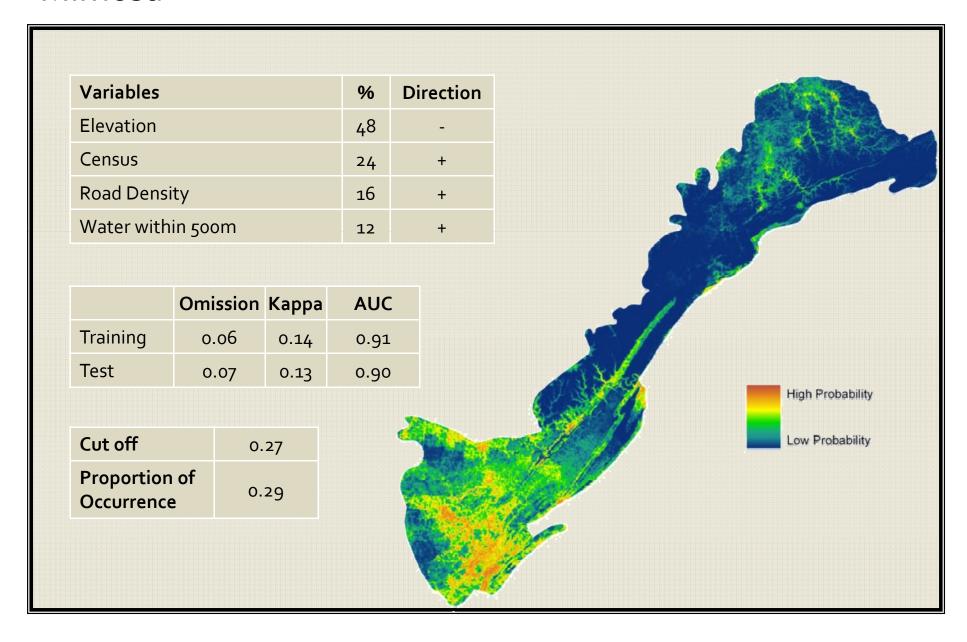



MAXENT MODELS:

- The omission rate, Cohen's Kappa and AUC were used to assess the reliability and validity of models.
- Evaluation statistics were calculated for both training (70%) and withheld (30%) data.
- Binary occurrence maps were developed using a threshold value that maximized the sum of sensitivity and specificity.



Cumulative threshold	Logistic threshold	Description Fractional predicted		Training omission rate	Test omission rate	P-value
1.000	0.082	Fixed cumulative value 1	0.845	0.007	0.000	9.186E-9
5.000	0.182	Fixed cumulative value 5	0.671	0.042	0.046	1.278E-15
10.000	0.286	Fixed cumulative value 10	0.562	0.084	0.098	1.097E-19
0.223	0.039	Minimum training presence	0.927	0.000	0.000	1.13E-4
11.052	0.305	10 percentile training presence	0.545	0.099	0.121	6.67E-19
33.294	0.473	Equal training sensitivity and specificity	0.315	0.315	0.289	1.894E-29
24.710	0.423	Maximum training sensitivity plus specificity	0.386	0.208	0.202	4.766E-29
35.149	0.485	Equal test sensitivity and specificity	0.301	0.337	0.301	1.571E-30
22.230	0.408	Maximum test sensitivity plus specificity	0.410	0.201	0.173	4.068E-29
1.448	0.102	Balance training omission, predicted area and threshold value	0.816	0.007	0.012	2.39E-9
4.858	0.181	Equate entropy of thresholded and original distributions	0.676	0.042	0.046	2.911E-15


Japanese Honeysuckle

Tall Fescue

Mimosa

Variable comparison

- Environmental variables dominated the models.
- Elevation in was used for three species.
- The single dominant variable either elevation or minimum temperature, both environmental variable.
- Some anthropogenic effects in all models.

		panese eysuckle	Tall Fescue		I	Mimosa
Variables	%	Direction	%	Direction	%	Direction
Elevation	58	-	19	Λ	48	-
Slope	6	-				
Northness			7	-		
Annual Rainfall			10	Λ		
Minimum Temperature	22	+	54	-		
Water within 500m					12	+
Total	86		90		60	

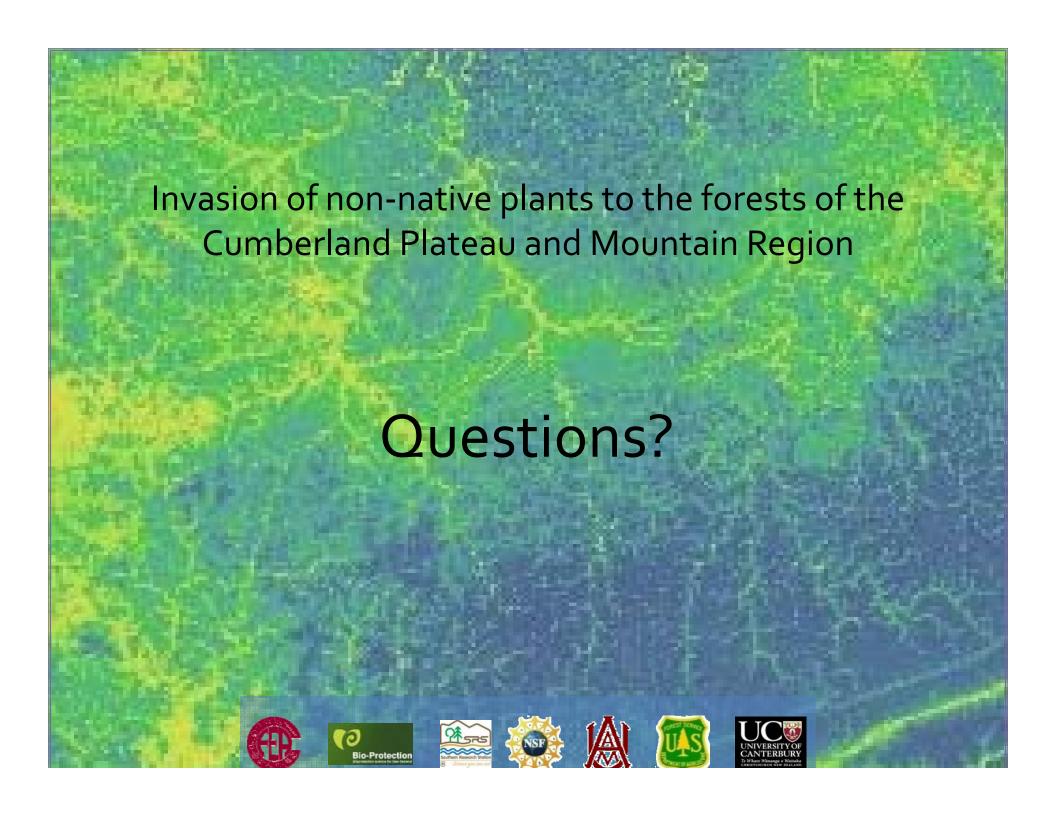
		ipanese ieysuckle	Tall Fescue		Mimosa	
Variables	%	Direction	%	Direction	%	Direction
Forest within 500m	10	-				
Farming within 500m			10	Λ		
Distance to Main Road	4	U				
Road Density					16	+
Census					24	+
Total	14		10		40	

Density comparison

- All models showed increasing spread of the species
- Omission rates were low, thus prediction of occurrence is good
- Kappa was good for Japanese honeysuckle but poor for tall fescue and mimosa, this takes into account absences, suggests these models don't predict absences well.
- AUC was reasonable for all models

	Proportion of sites with occurrence	Predicted Area	()mission		AUC
Japanese honeysuckle	30%	50%	0.20	0.50	0.87
Tall Fescue	5%	16%	0.25	0.19	0.82
Mimosa	2%	29%	0.06	0.14	0.91

Main Conclusions:


- Japanese honeysuckle and mimosa were predominantly in the southern portion of the Cumberland Plateau and Mountain region.
- Tall fescue was predominantly in the northern portion of the Cumberland Plateau and Mountain region.
- All species were predicted to increase in occurrence.
- Models were dominated by habitat requirements (environmental) rather than anthropogenic activities.
- All models were good for occurrence but lower occurrence models did not predict current absents very well.

Future Work:

- Develop probability maps for other species including tree of heaven, privets, non native roses and Nepalese brown top.
- Hotspot modeling.
- Assess the response under differing climate change scenarios.
- Examine scalability of models (single county, Southeast).

ACKNOWLEDGEMENTS:

- This work has been partially supported by the Center for Forest Ecosystem Assessment and was partial funded by the National Science Foundation (Award ID: 0420541).
- Samuel Lambert of the USDA Forest Service was instrumental in extracting the FIA data.
- Callie Schweitzer (USDA) and Yong Wang (AAMU) have given valuable advice in the initial development and progress of this research.

