Molecular Genetic Variation in Cogongrass Near the Point of Initial Introduction into the Southeastern United States

Ludovic J.A.Capo-chichi W.H. Faircloth, A.G. Williamson M. G. Patterson, J.H. Miller S. L. Noffsinger, and Edzard van Santen Auburn University

	Infestatio	n with I.	cylindrica			
Year	Infested (ha)	Location	Reference			
1954	200	Mobile Cty	Tabor (1952)			
1974	4,000	Mobile Cty	Dickens (1974)			
2003	200,000	SW Alabama	a Faircloth et al. (2003)			
 20-fold increase from 1954 to 1974 50-fold increase from 1974 to 2003 Most likely an underestimate of the total area currently infested Survey concentrated on highway right-of-ways 						
May-05			5			

Amplified Fragment Length Polymorphism (AFLP)

- A PCR-based molecular technique that can provide
 An estimate of genetic diversity in introduced species,
 Evidence of multiple introductions,
 - *Evidence of zones of hybridization, and
 - Identify compatible relationships between biocontrol agent and weed host

May-05

AFLP protocol

- Extract total genomic DNA (CTAB protocol)
- Quantify and standardize DNA concentrations
- Standard AFLP protocol
 Pre-amplification
- * Selective amplification
- **Banding patterns visualized with IR dyes**
- Manual scoring

May-05

Statistical Analysis

- Cluster analysis
 - Relationship based on the banding profile of individuals
 Assigns these individuals to artificial clusters
- Canonical discriminant analysis
 - Analysis based on preexisting groups (sampling sites)
 - Maximizes among group differences based on the common profile of members of a group

May-05

Statistical Analysis (cont.)

- 🕨 Gene diversity estimates 👘
 - * A measure of genetic variance of a population equal to the probability of identity of randomly chosen genes

Gene flow (Nm) estimates Refers to all mechanisms resulting in the movement of genes from one population to another

Polymorphism and Gene Diversity

		Polymorhic markers		Gene	
	Population	n	%	diversity H _r	
	P1	59	43	0.10	
	P2	55	40	0.14	
	P3	68	50	0.16	
	P4	58	42	0.13	
	P5	48	35	0.09	
	P6	59	43	0.10	
	P7	44	32	0.11	
	P8	45	33	0.09	
	Pi	(27)	(20)	0.07	
May-05					11

Summary

- > AFLPs work well in weedy species
- Populations of I. cylindrica near the point of initial introduction contain quite a bit of genetic variation
- 74 % of all AFLP markers showed polymorphism

- Founder effect. The founder source contains the lowest gene diversity. Something that was not well-known
- 56 % of the molecular variance was contained within populations
- *Evidence that populations are differentiated*

Summary (cont.)

- In both cases (molecular and historical) there is no evidence for private alleles
- Creation of genetic diversity
 Genetic recombination
 Variation created at vegetative level
- Anthropogenic dispersal is one of the powerful agents for local dispersal of I. cylindrica May-05

