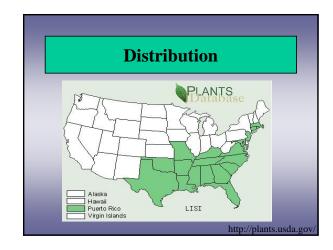
Affects of Herbicide Timing and Application Method on Fruiting and Germinable Seeds in Chinese Privet (Ligustrum sinense)

S. R. Vokoun and L. R. Nelson Clemson University

Privet Characteristics


- Semi-evergreen perennial shrub
- 5 to 30 ft in ht
- Flowers April to June
- Seeds green to blue/black in the fall

Chinese Privet

- Introduced 1852
- · Planted as ornamental
- · Escaped cultivation
- Aggressive invasive species
- · Adaptable to many sites
- · Shade tolerant
- Prolific seed producer

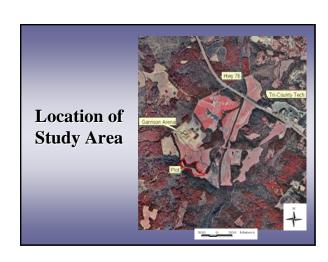
Trouble with Privet

- Limits
 - Regeneration
 - Wildlife habitat
 - Biodiversity
 - Recreational activities
 - Stream quality?

Control

- Best option is Herbicide
 - Mechanical = Site disturbance
 - Fire = Resprouting
 - Biological controls = None
 - Manual = Only on smaller plants

The Problem


- · Previous studies
 - Late season applications
 Ahuja (2003)
 Harrington and Miller (2005)
- Fruit and Seed production complete by October
- Late season control may be temporary
 - Seed still viable (1 yr)

Objective

- Determine:
 - Optimum time and method to apply herbicides in order to control the adult plant and eliminate fruit production and/or seed germinability.

Methods

Set Up

- 2 spray types
 - Foliar (glyphosate)
 - Basal (triclopyr)
- 4 rates (none, low, medium, high)
- 8 application times (May to December 2004)

Foliar Spray

- 128 plants under 6 ft
- Spray-to-wet
- Accord SP®
- Rates % v/v in water
 - 2.5 (Low)
 - 5 (Medium)
 - 10 (High)

Basal Spray

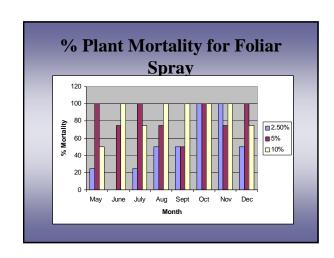
- 128 plants over 1.83 m
- Garlon 4®
- % v/v in vegetable oil
 - 10 (Low)
 - 20 (Medium)
 - 30 (High)
- Lower 18 in of stem

Experimental Design

- · Completely randomized
- 4 replications (plants)
- 32 plants treated each time
 - 8 non-sprayed plants(4 basal/4 foliar)
 - 12 foliar sprayed (4 per rate)
 - 12 basal sprayed (4 per rate)

Pre-spray seed count

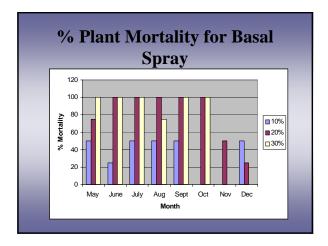
- Established baseline seed production
- Counted before each spray
- 3 seed branches


After Spray

- · Plants assessed for
 - Mortality
 - $\, Seed \,\, development$
- Until February 2005

Results and Discussion

Plant Mortality



Low (2.5%) Foliar Rate

- Most effective (100%) in October and November
 - Save costs
 - Reduces herbicide in the environment
- Why so efficient?
 - Flowering, shoot growth, and seed production all complete

Medium (5%) and High (10%) Foliar Rates

- 5 % Rate = 100 % Control in May, July, Oct. and Dec.
- 10% Rate = 100 % Control in June, Aug, Sept. Oct. Nov.
- Why are higher rates needed for Spring/Summer?
 - Active shoot growth
 - Drought

Basal Spray

- 10% too low effective control
- 20% effective May to October
- Lower mortality rates in late season attributed to
 - Lower bark penetration
 - Time between treatment and evaluation

Results and Discussion

Seed Production

Pre-Spray Seed Counts

- T-test for control vs. sprayed seed populations
 - Acceptable comparison for most treatments
 - Difference in mean populations
 - Sprayed plant means higher

Seed Production After Spray

- Virtually eliminated from May to September
- Early herbicide application controls both mature plants and seed production

Seed Problems

- October to December could not accurately assess seed population control
 - Large amounts of seed loss
 - Bird predation
 - Windstorms
 - · Natural seed drop

Conclusions

- Follow-up study
 - Check late season basal plant mortality
- Study suggests early, high rates will most effectively control mature privet and seed

Questions?