Ecology Impacts and Genetic Variability Research for Invasive Weeds

Charles T. Bryson Research Botanist USDA-ARS, SWSRU Stoneville, MS 38776 cbryson@ars.usda.gov

Invasive Weed Research

- •Characteristics that Contribute to Ecological Impacts
- •Ecological Range Studies
- •Genetic Variability

Invasive Weed Research

•Characteristics that Contribute to Ecological Impacts

•Ecological Range Studies

•Genetic Variability

Ecological Impacts of Invasive Weeds are

Directly Related to Biological and Ecological Characteristics

- Reproduction
- Dispersal
- Habitat
- Inter-specific interactions
- Phenology
- Physiology
- Protection from Herbivores
- Tolerance to Environmental Stress

(Bryson & Carter. 2004. Weed Technol. 18:1216-1220.)

Ecological Impacts of Invasive Weeds

Reproduction

- Copious seed
- •Profuse vegetative reproduction / fragmentation
- •Self-compatible
- •Cross pollinated wind pollinated
- Unspecific pollinators
- •Seed production under adverse conditions
- •Seed size similar to crop or native plants
- •Small inconspicuous flowers

Ecological Impacts of Invasive Weeds

Dispersal

- Multiple vectors
- •Short- and Long-range mechanisms
- •Structural modifications

Tropical Soda Apple (Solanum viarum Dunal) •Since 1988 spread to ca. 1 million ha in SE U.S. •Displaced native and agriculturally important species (forage grasses) •Cattle primary vector •Wildlife vector •Wildlife vector •Uidlife vector

Yellow Unicorn-Plant [Ibicella lutea (Lindl.) Van Eselt.]

Nothing known about its life history in SE U.S.
 Non-native invasive from Brazil
 In CA for >70 yrs now spreading in SE
 Detected in Bt Corn and GR Cotton
 Unique dispersal mechanism
 Annual

•Plants up to 5 m wide

•200 seed pods/season and ≥110 seed/pod •Seed extended dormancy & discontinuous germination

Ecological Impacts of Invasive Weeds

Habitat

- •Ability to invade new habitats
- •Germination and survival in a wide range of habitats

Japanese Honeysuckle (Lonicera japonica Thunb.)

- •Ability to invade a wide array of habitats
- •Thrives in full sun to heavy shade
- •Displaces native plants
- •Wildlife food

Ecological Impacts of Invasive Weeds

- Inter-specific interactions
- •Parasitize other plants
- Shade other vegetation
- •Alternate host for insect and pathogen pests of crops
- •Resistance to pathogens
- •Utilize all available moisture

Cogongrass

Discovered 3 skipper butterfly larvae feed on Cogongrass ______60% reduction of

cogongrass foliage

Problem: All feed on crop and/or ornamentals (i.e. corn, sorghum, St. Augustine, bermudagrass, and many other native and non-native grasses)

(Bryson)

Tropical Soda Apple

- •Suckfly (*Tupiocoris* sp.: Heteroptera) •Vector pathogens
- •400 to 800 adults & nymphs / plant •Late fall
- •Leaf chlorosis & abscission
- •TSA fruit/seed production reduced
- •Pest of Tomato, Potato, Pepper, etc.

(Usnick & Bryson)

Ecological Impacts of Invasive Weeds

Phenology

- •Early maturation
- •Extended seed dormancy
- •Discontinuous germination
- •Long life of propagules (in soil or during dispersal)
- •Multiple generations annually
- Photoperiodic flowering
- Rapid growth
- •Short juvenile period

Bloodscale Sedge (*Cyperus sanguinolentus* Vahl)

- •Potential threatened and endangered species (*Cyperus louisianensis* Thieret)? No!!!!
- •Non-native species from Asia
- •Life cycle differs from other annual sedges of Asian origin •Photoperiodic - flowers and fruits late in fall (late Sept to frost)
- •Thus, may not become a major weed problem in SE U.S.

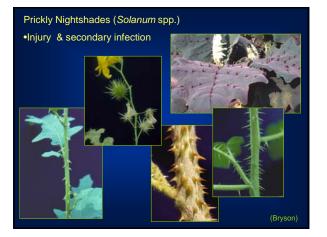
Ecological Impacts of Invasive Weeds

Physiology

- •Accumulation of large food reserves (roots, rhizomes, etc.)
- •High photosynthetic rate (C₄ photosynthesis)
- Increased water efficiency (C₄ photosynthesis)
- •Production of phytotoxins to prohibit or suppress growth (allelopathy)

Cogongrass [Imperata cylindrica (L.) Beauv.]

•Rhizomes produce Phytotoxic compounds (Allelopathy) •Reduces germination and growth of other grasses & broadleaf plants



Ecological Impacts of Invasive Weeds

Protection from Herbivores

•Production of toxic secondary compounds that deter herbivores

•Structural modifications that cause injury or repel animals or herbivores (Thorns, Prickles, Spines, Urticating hairs, etc.)

Ecological Impacts of Invasive Weeds

Tolerance to Environmental Stress

•Germination and growth through harsh environmental zones

•Survive environmental and chemical extremes (fire, salinity, soil disturbance, heavy metals, herbicides, etc.)

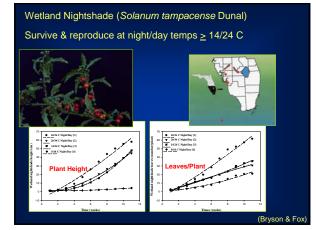
Cogongrass


Aggressive perennial
Forms monocultures
Alters fire regimes
Displaces native species

Cogongrass

•Need for more economical control methods

•>\$150/ha for multiple herbicide applications over multiple years Heat treatment to kill rhizomes?



Invasive Weed Research

- •Characteristics that Contribute to Ecological Impacts
- •Ecological Range Studies
- •Genetic Variability

Ecological Range Studies

Used to Predict: •Environmental / climatic requirements •Reproductive potential •Spread and establishment rates

Wetland Nightshade

Plants overwintering above water level •33% survived - 6 winters •New shoots from base of plants

Plants overwintering submerged ●80 and 100% survived - 2 winters ●Leaves from submerged stems and when water temp was ≥19 C

Conclusion: Winter survival adequate for additional spread in SE U.S. (to Lat 33°)

(Bryson & Fox)

Invasive Weed Research

•Characteristics that Contribute to Ecological Impacts

•Ecological Range Studies

•Genetic Variability

Genetic Variability

Determine:

- •Diversity within and among populations •Source and number of introductions
- Dispersal rate
- •Track herbicide-resistance
- •Search for host-specific biological control agents •Life events (i.e. photoperiodic, seed production....)

Tropical Soda Apple

DNA fingerprinting 31 U.S. populations from 6 states (110 plants) 4 Brazil populations (22 plants)

No morphological differences – all populations

Two haplotypes detected (differed by 2 bases for a total of 0.38% sequence divergence)

•All U.S. populations same

•3 of 4 populations (17 of 22 plants) from Brazil same as U.S.

(Kreiser, Bryson, & Usnick)

Common Cocklebur (*Xanthium strumarium* L.)

Genetic alteration – Multi-seeded genotype from Texas

Typical – two embryo / fruit

Selection - up to 16 embryo / fruit

(Abbas – USDA-ARS, Stoneville)

Invasive Weeds Research Needs:

•Basic Biological and Ecological Processes •Potential Ecological Range •Vectors for Spread •Genetic Diversity •New Control Strategies •Host-Specific Biological Control Agents